By Nicole Carbajal

Sophomore Scott Riley rests his elbows on his knees and swivels slowly in the battered computer chair. He’s fiddling with his fingertips and the purple pucked scar on his left knee is peeking from the hem of his athletic shorts he’s sporting mid-February. Scott doesn’t compete in basketball. He isn’t smashing shoulder pads on the defensive line, nor is he allowed in any situation in which he would be vulnerable to contact. He can’t. For him, it’s not a choice. In fact, if he had his way, he’d be on the court sprawling for a loose ball. If he had it his way, he wouldn’t have to be wary giving a blow to the head or his monthly blood platelet count.

“Normal people have about 150,000 to 450,000 blood platelets. I have 39,000 right now because I’m sick. The highest I’ve had is 88,000 and the lowest is 23,000,” he explains in his notoriously loud announcer voice.

Scott couldn’t always name the amount of blood platelets in his body. He only really had a vague idea of what platelets were. It wasn’t until his freshmen football season that he discovered this problem.

“We were in practice and I was playing linebacker. We were supposed to rush the quarterback,” he begins. His legs got taken out underneat him at about the same time contact was made at his side.

“I heard three different pops in my left knee, but I kept playing on it. I thought I’d just have a hyper-extended knee,” he says. His warrior mentality urged him to participate for a week before a specialist confirmed a complete Anterior Cruciate Ligament (ACL) tear in his left knee. His surgery was scheduled for three weeks later, but the pre-op evaluation didn’t go as planned. He was diagnosed with Thrombocytopenia (low blood platelet count).

“I didn’t have enough blood platelets. Blood platelets help heal, so they couldn’t do surgery without them. I waited for two months and they checked every week, but it just got worse and worse.” The tear was actually a severe rescue.

“They said if I had gotten a concession I could’ve gotten internal bleeding in my brain and died. So it was sort of a blessing in disguise,” he says. After two and half months of wishful thinking and walking on a torn ACL, the doctors surrendered to an infusion to prepare Scott for surgery. This process emptied two bags of blood platelets and water into his system for eight hours. This put his platelets at a normal level in order to perform the surgery.

“They had to take some of my hamstring because my meniscus and ACL were frayed since I went three months without the surgery,” His biggest concern during recovery wasn’t the set of stairs to climb to math class. It wasn’t his inability to drive or the crutches that accompanied him wherever he went, but rather the leg muscle he was losing during recovery and the undermining by people who didn’t understand. “It’s a pretty complex reason. I didn’t think people really got why I couldn’t play sports anymore,” he says. “I mean, I never have won a football game yet, and I was planning on playing all three sports. I have always wanted to go into the Navy Academy and be a Navy Seal too, but now it’s not looking so good.”

Despite the need to reevaluate his future plans, Scott realizes it could be worse. “One time when I was in there getting my platelets checked there was a baby that only had 7,000. He couldn’t be touched without being bruised. It made me realize that my problem was a lot less severe than a little tiny baby that couldn’t even be held.”

Though Scott has joined the one-act crew and the speech team to stay involved his sophomore year, his main focus is returning to sports. He’s faced with three options to do so. Pills and steroids (different than performance enhancers) that to produce more blood platelets and slow the destruction of them, but that option isn’t in favor of doctors or Scott. The second option is a spleenectomy, removing one of them, but that option isn’t in favor of doctors or Scott. The second option is a spleenectomy, in which they would remove his spleen. Since the spleen is where a third of the body’s blood platelets are kept and there’s a chance it can hold too many instead of releasing them into his bloodstream, removing it would allow the flow of platelets.

“Removing my spleen is a better option, but if a virus attacks and my spleen can’t filter my blood, it could affect my long-term health.” Then there’s the option of more infusions which would put his platelets over 260,000 for a month at a time, “except they basically make me puke my brain out,” he informs. Above 75,000 platelets is safe, but in order to play and not worry about a fatal injury, an athlete needs 150,000.

“I guess it has helped me learn more about blood platelets. I bet a lot of people don’t know their platelet count goes down when they’re sick or how many they have,” he finishes on the matter. And it’s that positive outlook that has fully fulfilled his future plans.

“A Blessing in Disguise
Sophomore discovers rare disease after ACL tear

With the statistic of injured athletes becoming far too common at a young age, it’s about time you know what it means to tear your Anterior Cruciate Ligament and ways you can prevent it.

Step #1: The Anatomy of the Knee

The Anterior Cruciate Ligament is crucial in stabilizing the knee. It sounds like “crucial” for a reason. It’s one of the four major ligaments in the knee.

Step #2: The Injury Itself

Most of the time the injury occurs without any contact. If an athlete lands flat footed or in a vulnerable position and get pushed or the femur and tibia move in opposite directions, the ligament tears. Most people say they hear a “popping” when it occurs. This is actually the sound of the fibers tearing. The tear can be partial or complete, and though symptoms usually reside after a few weeks, if a tear occurred, the knee persists to “give out.” They tend to be more common due to more activity and demand in sports. They’re more common in females than males, but experts aren’t sure why.

Step #3: Surgery, Recovery and Prevention

During surgery, the doctor removes the remains of the torn ACL fibers. Both hamstrings and patella tendons can be used as donor tissues. The surgeon then drills a tunnel through the tibia, between the separated bones and up through the femur. The donor tendon is then strung through this tunnel and screws are used to secure the new ACL tendon. It takes 6-8 weeks for the bone to repair the tunnel that was drilled and 6-9 months for a full recovery through physical therapy. Prevention is performed by strengthening the muscles around the ACL.